Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; 88(12): e202300376, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37857584

RESUMO

This paper demonstrates the effectiveness of using of different catalysts for reforming tars contained in the syngas of biomass gasifiers. The conversion of the tar content allows to obtain high quality syngas and to maximize the gas fraction. A bench scale equipment consisting of an autothermal fluidized bed gasifier and a downstream packed bed reformer was used. Pine sawdust was selected as the feedstock for gasification. TGA analysis showed that the temperature must be above 350 °C to ensure the ignition of the biomass and maintain the process in an autothermal steady-state. Dolomite and pyrolysis char were used to test of the fluidized bed catalysts. In the reformer, dolomite, pyrolysis char, iron doped activated carbon and spent HDS catalyst were used. All catalysts decreased the CO2 concentration in the product gas and increased H2 , CH4 and CO. When iron doped activated carbon is used, tar contents below 60 g/Nm3 in the product gas could be obtained, reaching less than 1 g/Nm3 . The best value of LHV (lower heating value) was obtained with pyrolysis char as a catalyst (4.8 MJ/Nm3 ). The results demonstrate that catalytic biomass gasification with downstream tar reforming with low-cost catalysts is a promising solution for energy applications.

2.
Chempluschem ; 88(10): e202300344, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37749065

RESUMO

The catalytic performance of nanoparticles (NPs) of Ag anchored on different supports was evaluated during the selective hydrogenation of 1-pentyne and the purification of a mixture of 1-pentene/1-pentyne (70/30 vol %). The catalysts were identified: Ag/Al (Ag supported on É£-Al2 O3 ), Ag/Al-Mg (Ag supported on É£-Al2 O3 modified with Mg), Ag/Ca (Ag supported on CaCO3 ) and Ag/RX3 (Ag supported on activated carbon-type: RX3). In addition, in situ DRIFTS analysis of 1-pentyne adsorption on each support, catalyst, and 1-pentyne hydrogenation were investigated. The results showed that the synthesized catalysts were active and very selective (≥85 %) for obtaining the desired product (1-pentene). Different adsorbed species (-C≡C- and -C=C-) were observed on the supports and catalysts surface using in situ DRIFT analysis, which can be correlated to the activity and high selectivity reached. The role of the supports and electronic properties over Ag improve the H2 dissociative chemisorption during the hydrogenation reactions; promoting the selectivity and the high catalytic performance. Ag/Al and Ag/Al-Mg were the most active catalysts. This was due to the synergism between the active Ag/Ag+ species and the supports (electronic effects). The results show that Ag/Al and Ag/Al-Mg catalysts have favorable properties and are promising for the alkyne hydrogenation and olefin purification reactions.

3.
ScientificWorldJournal ; 2013: 528453, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24348168

RESUMO

Palladium, platinum, and ruthenium supported on activated carbon were used as catalysts for the selective hydrogenation of 1-heptyne, a terminal alkyne. All catalysts were characterized by temperature programmed reduction, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. TPR and XPS suggest that the metal in all catalysts is reduced after the pretreatment with H2 at 673 K. The TPR trace of the PdNRX catalyst shows that the support surface groups are greatly modified as a consequence of the use of HNO3 during the catalyst preparation. During the hydrogenation of 1-heptyne, both palladium catalysts were more active and selective than the platinum and ruthenium catalysts. The activity order of the catalysts is as follows: PdClRX>PdNRX>PtClRX≫RuClRX. This superior performance of PdClRX was attributed in part to the total occupancy of the d electronic levels of the Pd metal that is supposed to promote the rupture of the H2 bond during the hydrogenation reaction. The activity differences between PdClRX and PdNRX catalysts could be attributed to a better accessibility of the substrate to the active sites, as a consequence of steric and electronic effects of the superficial support groups. The order for the selectivity to 1-heptene is as follows: PdClRX=PdNRX>RuClRX>PtClRX, and it can be mainly attributed to thermodynamic effects.


Assuntos
Carvão Vegetal/química , Metais/química , Catálise , Hidrogenação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...